By Topic

Large vocabulary continuous Mandarin speech recognition using finite state machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi-Cheng Pan ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chia-Hsing Yu ; Lin-shan Lee

The finite state transducer (FST), popularly used in the natural language processing (NLP) area to represent the grammar rules and the characteristics of a language, has been extensively used as the core in large vocabulary continuous speech recognition (LVCSR) in recent years. By means of FST, we can effectively compose the acoustic model, pronunciation lexicon, and language model to form a compact search space. In this paper, we present our approach to developing a LVCSR decoder using FST as the core. In addition, the traditional one-pass tree-copy search algorithm is also described for comparison in terms of speed, memory requirements and achieved character accuracy.

Published in:

Chinese Spoken Language Processing, 2004 International Symposium on

Date of Conference:

15-18 Dec. 2004