By Topic

Flexible organic complementary circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Klauk, H. ; New Memory Platforms, Mater. & Technol., Infincon Technol., Erlangen, Germany ; Halik, M. ; Zschieschang, U. ; Eder, F.
more authors

We report the first organic complementary circuits on flexible substrates. Organic thin-film transistors were fabricated using pentacene as the semiconductor for the p-channel devices and hexadecafluorocopperphthalocyanine (F16CuPc) as the semiconductor for the n-channel devices. Both semiconductors were purchased from commercial sources and deposited by evaporation in vacuum. The pentacene layer was photolithographically patterned to simplify the circuit layout and reduce the circuit area. The transistors and circuits were manufactured on thin, transparent sheets of polyethylene naphthalate. Evaporated metals were used to define all contacts and interconnects, and a 50-nm-thick layer of solution-processed polyvinylphenol was used as the gate dielectric. Transistors and circuits operate at supply voltages as low as 8 V, and ring oscillators have a signal propagation delay as low as 8 μs per stage. To our knowledge, these are the fastest organic complementary circuits reported to date.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 4 )