By Topic

Quantum modeling and proposed designs of CNT-embedded nanoscale MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akturk, A. ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Pennington, Gary ; Goldsman, N.

We propose a novel MOSFET design that embodies single-wall zigzag semiconducting carbon nanotubes (CNTs) in the channel. Investigations show that CNTs have high low-field mobilities, which can be as great as 1 × 105 cm2/V·s. Thus, we expect that MOSFET performance can be improved by embedding CNTs in the channel. To investigate the performance of a newly proposed CNT-MOSFET device, we develop a methodology that connects CNT modeling to MOSFET simulations. Our calculations indicate that by forming high mobility regions in the channel, MOSFET performance can be boosted. However, barriers formed between the CNT and silicon due to the variations of the bandgaps and electron affinities can degrade MOSFET performance improvements. Our calculations were obtained by building on our existing CNT Monte Carlo simulator , and quantum-based device solver ,.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 4 )