By Topic

Boundary following and globally convergent path planning using instant goals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. S. Ge ; Electr. & Comput. Eng. Dept., Nat. Univ. of Singapore, Singapore ; Xuecheng Lai ; A. A. Mamun

In this paper, an instant goal approach is proposed for collision-free boundary following of obstacles of arbitrary shape and globally convergent path planning in unknown environments. Firstly, for effective knowledge representation and manipulation, a vector representation is presented, which not only saves much space but also conforms to the physical properties of range sensors. Secondly, the concept of instant goals is introduced enabling the robot to perform boundary following in a "natural" human-like manner, with additional measures taken to ensure that the robot is moving "forward" along the boundary, even if the obstacle is of arbitrary shape and disturbing obstacles are present. Collision checking is performed simultaneously and, when needed, collision avoidance is efficiently incorporated in. Based on the approach of boundary following, a realistic sensor-based path planner with global convergence property is designed for the robot capable of acquiring discrete and noisy range data. Realistic simulation experiments validate the effectiveness of the proposed approaches.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 2 )