Cart (Loading....) | Create Account
Close category search window
 

Three-Layer laminated metal gate electrodes with tunable work functions for CMOS applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Bai, W.P. ; Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA ; Bae, S.H. ; Wen, H.-C. ; Mathew, S.
more authors

This letter presents a novel technique for tuning the work function of a metal gate electrode. Laminated metal gate electrodes consisting of three ultrathin (∼1-nm) layers, with metal nitrides (HfN, TiN, or TaN) as the bottom and top layers and element metals (Hf, Ti, or Ta) as the middle layer, were sequentially deposited on SiO2, followed by rapid thermal annealing annealing. Annealing of the laminated metal gate stacks at high temperatures (800°C-1000°C) drastically increased their work functions (as much as 1 eV for HfN-Ti-TaN at 1000°C). On the contrary, the bulk metal gate electrodes (HfN, TiN and TaN) exhibited consistent midgap work functions with only slight variation under identical annealing conditions. The work function change of the laminated metal electrodes is attributed to the crystallization and the grain boundary effect of the laminated structures after annealing. This change is stable and not affected by subsequent high-temperature process. The three-layer laminated metal gate technique provides PMOS-compatible work functions and excellent thermal stability even after annealing at 1000°C.

Published in:

Electron Device Letters, IEEE  (Volume:26 ,  Issue: 4 )

Date of Publication:

April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.