Cart (Loading....) | Create Account
Close category search window

Improved current-regulated delta Modulator for reducing switching frequency and low-frequency current error in permanent magnet brushless AC drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wipasuramonton, P. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, UK ; Zi Qiang Zhu ; Howe, D.

The conventional current-regulated delta modulator (CRDM) results in a high current ripple and a high switching frequency at low rotational speeds, and in low-frequency current harmonics, including a fundamental current error, at high rotational speeds. An improved current controller based on CRDM is proposed which introduces a zero-vector zone and a current error correction technique. It reduces the current ripple and switching frequency at low speeds, without the need to detect the back-emf, as well as the low-frequency error at high speeds. The performance of the modulator is verified by both simulation and measurements on a permanent magnet brushless ac drive.

Published in:

Power Electronics, IEEE Transactions on  (Volume:20 ,  Issue: 2 )

Date of Publication:

March 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.