By Topic

Analytical evaluation of harmonic distortion in PWM AC drives using the notion of stator flux ripple

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Narayanan ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; V. T. Ranganathan

This paper presents a method to evaluate harmonic distortion due to space vector-based pulse-width modulation (PWM) strategies for ac drives. The proposed method is general enough to deal with division of zero vector time as well as division of active vector time within a subcycle. The method is based on the notion of stator flux ripple, which is a measure of line current ripple. Expressions for RMS ripple over a subcycle are derived for six switching sequences in terms of magnitude and angle of the reference vector, and subcycle duration. The sequences considered include those involving division of active vector time within a subcycle. Further, analytical closed form expressions are derived for the total RMS harmonic distortion factor corresponding to six space vector-based synchronized PWM strategies, proposed recently, for high power drives. The square of the distortion factor turns out to be a quadratic polynomial in modulation index (M), and the coefficients differ with PWM strategies and pulse numbers. These expressions are validated through Fourier analysis as well as experimental measurements. The concept of stator flux ripple provides insight into current ripple as well as torque ripple corresponding to different sequences and strategies.

Published in:

IEEE Transactions on Power Electronics  (Volume:20 ,  Issue: 2 )