By Topic

An automatic nonrigid registration for stained histological sections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Auer, M. ; Inst. for Struct. Anal., Graz Univ. of Technol., Austria ; Regitnig, P. ; Holzapfel, G.A.

Automatic computer-based analyses of histological sections which are differently stained require that they are related to each other. Most registration methods are only able to perform rigid-body motion and are sensitive to noise and artifacts. Histological images, however, are accompanied by several artifacts and different contrasts, which require a nonrigid registration. In this paper, we present a hierarchical nonrigid registration algorithm able to align images, which contain minor image artifacts. The algorithm requires no a priori knowledge of the true image. The hierarchical design of the algorithm enhances robustness and accuracy, and saves computational costs. The proposed algorithm is decomposed into a fast, coarse, rigid registration step and a slower, but finer, nonrigid step. For the coarse registration, we use image pyramids, while for the second step, we combine a point-based registration with an elastic thin-plate spline interpolation. Accuracy tests, performed for 20 histological images obtained from human arteries, have shown that the error measure is acceptable, and that the image noise does not cause a problem. The associated convergence rate of the mean pixel displacement error during the rigid and nonrigid registrations is satisfying. The algorithm can be applied to various multicontrast elastic registration problems in medical imaging and may be extended to three dimensions.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 4 )