By Topic

Power characteristics of inductive interconnect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. A. El-Moursy ; Dept. of Electr. & Comput. Eng., Rochester Univ., NY, USA ; E. G. Friedman

The width of an interconnect line affects the total power consumed by a circuit. The effect of wire sizing on the power characteristics of an inductive interconnect line is presented in this paper. The matching condition between the driver and the load affects the power consumption since the short-circuit power dissipation may decrease and the dynamic power will increase with wider lines. A tradeoff, therefore, exists between short-circuit and dynamic power in inductive interconnects. The short-circuit power increases with wider linewidths only if the line is underdriven. The power characteristics of inductive interconnects therefore may have a great influence on wire sizing optimization techniques. An analytic solution of the transition time of a signal propagating along an inductive interconnect with an error of less than 15% is presented. The solution is useful in wire sizing synthesis techniques to decrease the overall power dissipation. The optimum linewidth that minimizes the total transient power dissipation is determined. An analytic solution for the optimum width with an error of less than 6% is presented. For a specific set of line parameters and resistivities, a reduction in power approaching 80% is achieved as compared to the minimum wire width. Considering the driver size in the design process, the optimum wire and driver size that minimizes the total transient power is also determined.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:12 ,  Issue: 12 )