By Topic

Incremental model-based estimation using geometric constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sminchisescu, C. ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada ; Metaxas, D. ; Dickinson, S.

We present a model-based framework for incremental, adaptive object shape estimation and tracking in monocular image sequences. Parametric structure and motion estimation methods usually assume a fixed class of shape representation (splines, deformable superquadrics, etc.) that is initialized prior to tracking. Since the model shape coverage is fixed a priori, the incremental recovery of structure is decoupled from tracking, thereby limiting both processes in their scope and robustness. In this work, we describe a model-based framework that supports the automatic detection and integration of low-level geometric primitives (lines) incrementally. Such primitives are not explicitly captured in the initial model, but are moving consistently with its image motion. The consistency tests used to identify new structure are based on trinocular constraints between geometric primitives. The method allows not only an increase in the model scope, but also improves tracking accuracy by including the newly recovered features in its state estimation. The formulation is a step toward automatic model building, since it allows both weaker assumptions on the availability of a prior shape representation and on the number of features that would otherwise be necessary for entirely bottom-up reconstruction. We demonstrate the proposed approach on two separate image-based tracking domains, each involving complex 3D object structure and motion.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 5 )