By Topic

Automatic image orientation detection via confidence-based integration of low-level and semantic cues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiebo Luo ; Res. & Dev. Lab., Eastman Kodak Co., Rochester, NY, USA ; M. Boutell

Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 5 )