Cart (Loading....) | Create Account
Close category search window
 

Active and dynamic information fusion for facial expression understanding from image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongmian Zhang ; Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, USA ; Qiang Ji

This paper explores the use of multisensory information fusion technique with dynamic Bayesian networks (DBN) for modeling and understanding the temporal behaviors of facial expressions in image sequences. Our facial feature detection and tracking based on active IR illumination provides reliable visual information under variable lighting and head motion. Our approach to facial expression recognition lies in the proposed dynamic and probabilistic framework based on combining DBN with Ekman's facial action coding system (FACS) for systematically modeling the dynamic and stochastic behaviors of spontaneous facial expressions. The framework not only provides a coherent and unified hierarchical probabilistic framework to represent spatial and temporal information related to facial expressions, but also allows us to actively select the most informative visual cues from the available information sources to minimize the ambiguity in recognition. The recognition of facial expressions is accomplished by fusing not only from the current visual observations, but also from the previous visual evidences. Consequently, the recognition becomes more robust and accurate through explicitly modeling temporal behavior of facial expression. In this paper, we present the theoretical foundation underlying the proposed probabilistic and dynamic framework for facial expression modeling and understanding. Experimental results demonstrate that our approach can accurately and robustly recognize spontaneous facial expressions from an image sequence under different conditions.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 5 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.