By Topic

An intelligent system approach to higher-dimensional classification of volume data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tzeng, F.-Y. ; Dept. of Comput. Sci., California Univ., Davis, CA, USA ; Lum, E.B. ; Kwan-Liu Ma

In volume data visualization, the classification step is used to determine voxel visibility and is usually carried out through the interactive editing of a transfer function that defines a mapping between voxel value and color/opacity. This approach is limited by the difficulties in working effectively in the transfer function space beyond two dimensions. We present a new approach to the volume classification problem which couples machine learning and a painting metaphor to allow more sophisticated classification in an intuitive manner. The user works in the volume data space by directly painting on sample slices of the volume and the painted voxels are used in an iterative training process. The trained system can then classify the entire volume. Both classification and rendering can be hardware accelerated, providing immediate visual feedback as painting progresses. Such an intelligent system approach enables the user to perform classification in a much higher dimensional space without explicitly specifying the mapping for every dimension used. Furthermore, the trained system for one data set may be reused to classify other data sets with similar characteristics.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:11 ,  Issue: 3 )