By Topic

EaseCAM: an energy and storage efficient TCAM-based router architecture for IP lookup

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ravikumar, V.C. ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA ; Mahapatra, R.N. ; Bhuyan, L.N.

Ternary content addressable memories (TCAMs) have been emerging as a popular device in designing routers for packet forwarding and classifications. Despite their premise on high-throughput, large TCAM arrays are prohibitive due to their excessive power consumption and lack of scalable design schemes. We present a TCAM-based router architecture that is energy and storage efficient. We introduce prefix aggregation and expansion techniques to compact the effective TCAM size in a router. Pipelined and paging schemes are employed in the architecture to activate a limited number of entries in the TCAM array during an IP lookup. The new architecture provides low power, fast incremental updating, and fast table look-up. Heuristic algorithms for page filling, fast prefix update, and memory management are also provided. Results have been illustrated with two large routers (bbnplanet and attcanada) to demonstrate the effectiveness of our approach.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 5 )