By Topic

Digital color halftoning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baqai, F.A. ; Xerox Corp., Webster, NY, USA ; Je-Ho Lee ; Agar, A.U. ; Allebach, J.P.

Digital color halftoning is the process of transforming continuous-tone color images into images with a limited number of colors. The importance of this process arises from the fact that many color imaging systems use output devices such as color printers and low-bit depth displays that are bilevel or multilevel with a few levels. The goal is to create the perception of a continuous-tone color image using the limited spatiochromatic discrimination capability of the human visual system. In decreasing order of how locally algorithms transform a given image into a halftone and, therefore, in increasing order of computational complexity and halftone quality, monochrome digital halftoning algorithms can be placed in one of three categories: 1) point processes (screening or dithering), 2) neighborhood algorithms (error diffusion), and 3) iterative methods. All three of these algorithm classes can be generalized to digital color halftoning with some modifications. For an in-depth discussion of monochrome halftoning algorithms, the reader is directed to the July 2003 issue of IEEE Signal Processing Magazine. In the remainder of this article, we only address those aspects of halftoning that specifically have to do with color. For a good overview of digital color halftoning, the reader is directed to Haines et al. (2003). In addition, Agar et al. (2003) contains a more in-depth treatment of some of the material found in this work.

Published in:

Signal Processing Magazine, IEEE  (Volume:22 ,  Issue: 1 )