By Topic

Use of modulated excitation signals in medical ultrasound. Part III: high frame rate imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Misaridis, T. ; Nat. Tech. Univ. of Athens, Greece ; Jensen, J.A.

For pt.II, see ibid., vol.52, no.2, p.192-207 (2005). This paper, the last from a series of three papers on the application of coded excitation signals in medical ultrasound, investigates the possibility of increasing the frame rate in ultrasound imaging by using modulated excitation signals. Linear array-coded imaging and sparse synthetic transmit aperture imaging are considered, and the trade-offs between frame rate, image quality, and SNR are discussed. It is shown that FM codes can be used to increase the frame rate by a factor of two without a degradation in image quality and by a factor of 5, if a slight decrease in image quality can be accepted. The use of synthetic transmit aperture imaging is also considered, and it is here shown that Hadamard spatial encoding in transmit with FM emission signals can be used to increase the frame rate by 12 to 25 times with either a slight or no reduction in signal-to-noise ratio and image quality. By using these techniques, a complete ultrasound-phased array image can be created using only two emissions.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 2 )