By Topic

Coded excitation for synthetic aperture ultrasound imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O'Donnell, M. ; Dept. of Biomed. Eng., Michigan Univ., Ann Arbor, MI, USA ; Yao Wang

Peak acoustic power limits the signal-to-noise ratio (SNR) of real-time ultrasound images. For most conventional scan formats, however, the average power is well below heating limits. This means the SNR can be significantly increased using coded excitation. A coded system transmits a broadband, temporally elongated excitation pulse with a finite time-bandwidth product. The received signal must be decoded to produce an imaging pulse with improved SNR resulting from the higher average power in the elongated excitation. Decoding can produce significant range side lobes, however, greatly reducing image quality. All practical coding designs, therefore, represent a trade-off between SNR gain and range side lobes. A specific coding scheme appropriate for synthetic aperture imaging is presented. A 14.5 dB SNR improvement with acceptable range side lobes is demonstrated on a forward-looking imaging system appropriate for intravascular applications.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 2 )