Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Coded excitation for diagnostic ultrasound: a system developer's perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chiao, R.Y. ; GE Med. Syst., Milwaukee, WI, USA ; Xiaohui Hao

Resolution and penetration are primary criteria for clinical image quality. Conventionally, high bandwidth for resolution was achieved with a short pulse, which results in a tradeoff between resolution and penetration. Coded excitation extends the bounds of this tradeoff by increasing signal-to-noise ratio (SNR) through appropriate coding on transmit and decoding on receive. Although used for about 50 years in radar, coded excitation was successfully introduced into commercial ultrasound scanners only within the last 5 years. This delay is at least partly due to practical implementation issues particular to diagnostic ultrasound, which are the focus of this paper. After reviewing the basics of biphase and chirp coding, we present simulation results to quantify tradeoffs between penetration and resolution under frequency-dependent attenuation, dynamic focusing, and nonlinear propagation. Next, we compare chirp and Golay code performance with respect to image quality and system requirements, then we show clinical images that illustrate the current applications of coded excitation in B-mode, harmonic, and flow imaging.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 2 )