By Topic

Superconducting spiral filters with quasi-elliptic characteristic for radio astronomy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guoyong Zhang ; Dept. of Electron. & Electr. Eng., Univ. of Birmingham, UK ; Huang, F. ; Lancaster, M.J.

To produce a filter small enough to fit a 2-in wafer at 408 MHz while maintaining high-quality performance, half-wavelength single spiral microstrip resonators are introduced. New coupling structures make both positive and negative coupling available by changing the directions of spiral winding. An eight-pole high-temperature superconducting bandpass spiral filter with 3.7% bandwidth at 408-MHz band is presented for radio astronomy applications at the Jodrell Bank Radio Observatory, Macclesfield, Cheshire, U.K. A quasi-elliptic characteristic with four transmission zeros is realized by adding three cross-couplings to the standard Chebyshev filter. The filter shown is designed and fabricated on a 32 mm × 18 mm × 0.508 mm MgO substrate. The untuned measured results of the filter at 30 K show a maximum passband insertion loss 0.35 dB (ripple 0.27 dB), a minimum return loss 13.2 dB, and minimum out-of-band rejection of 65 dB, which have good agreement with its electromagnetic full-wave simulation results.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 3 )