By Topic

Complete characterization of systems for simultaneous Lagrangian upsampling and fractional-sample delaying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Samadi ; Dept. of Electr. & Comput. Eng., Concordia Univ., Canada ; M. O. Ahmad ; M. N. S. Swamy

We present a complete formulation and an exact solution to the problem of designing systems for simultaneous sampling rate increase and fractional-sample delay in the Lagrangian sense. The problem may be regarded as that of a linear transformation, i.e., scaling, and/or shifting, of the uniform sampling grid of a discrete-time signal having a Newton series representation. It is proved that the solution forms a three-parameter family of maximally flat finite impulse response digital filters with a variable group-delay at the zero frequency. Various properties of the solution, including Nyquist properties and conditions for a linear phase response are analyzed. The solution, obtained in the closed form, is exact for polynomial inputs. We show that it is also suited for processing discrete-time versions of certain continuous-time bandlimited signals and signals having a rational Laplace transform. We then derive a generalization of the solution by augmenting the family with a fourth parameter that controls the number of multiple zeros at the roots of unity. This four-parameter family contains various types of maximally flat filters including those due to Herrmann and Baher. We list specific conditions on the four parameters to obtain many of the maximally flat filters reported in the literature. A significant part of the family of systems characterized by the solutions has been hitherto unknown. Examples are provided to elucidate this part as well.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:52 ,  Issue: 3 )