By Topic

Design features for enhancing the performance of electromagnetic valve actuation systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Clark, Richard E. ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, UK ; Jewell, G.W. ; Forrest, S.J. ; Rens, J.
more authors

The paper describes a type of variable air-gap reluctance actuator that offers potential for enhancing the dynamic performance of electromagnetic valve actuation systems for internal combustion engines. In both the stator and armature, the actuator incorporates design features that allow the force-displacement characteristic to be tailored to meet operational requirements. The paper demonstrates the considerable scope for varying actuator characteristics by means of detailed two- and three-dimensional finite-element modeling. The key findings from the finite-element modeling are validated by experimental measurements on a prototype actuator.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 3 )