By Topic

Real-time temperature dynamics in exchange-biased bilayers upon laser excitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. C. Weber ; Phys. Dept. & Forschungsschwerpunkt MINAS, Tech. Univ. Kaiserslautern, Germany ; H. Nembach ; B. Hillebrands ; J. Fassbender

A hot-spin and phonon gas in an exchange-biased metallic bilayer is induced by an 8.5-ps laser excitation. The spin-lattice temperature dynamics is sensed in real time by the time evolution of the exchange bias field on the picosecond time scale. A calibration with temperature-dependent quasi-static Kerr measurements yields a pump-pulse induced temperature increase of about 100°C at the interface. Upon photoexcitation, the exchange coupling across the interface between the ferromagnetic and antiferromagnetic layer is reduced within the first 10 ps, leading to a reduction of the bias field to about 50% of its initial value. The fast thermal unpinning of the exchange coupling is followed by a heat-diffusion dominated recovery with a relaxation time on the order of 160 ps. A heat transport analysis reveals the diffusivity of the bilayer system.

Published in:

IEEE Transactions on Magnetics  (Volume:41 ,  Issue: 3 )