By Topic

Temperature stability of magnetic field-induced strain and field-controlled shape memory effect on Ni52Mn16.4Fe8Ga23.6 single crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Y. T. Cui ; State Key Lab. for Magnetism, Chinese Acad. of Sci., Beijing, China ; Z. H. Liu ; M. Zhang ; G. D. Liu
more authors

The temperature dependence of the magnetic field-induced strain (MFIS) and the field-controlled shape memory effect in Ni52Mn16.4Fe8Ga23.6 single crystals were investigated by measuring the MFIS and measuring the magnetic field-enhanced transformation strain with a field bias applied in the [001] and [010] directions of the parent phase, respectively. The results show that such material combined with the martensitic transformation can product large field-enhanced transformation strain and large MFIS. The strain accompanying the martensitic transformation is -1.61% in zero field and can be enhanced to -3.30% by a field of 960 kA/m. A MFIS of 1.04% has been induced along [001] in unstressed crystals with saturated magnetic field of 600 kA/m applied along the same direction at near martensitic transformation temperature. It was found that the MFIS is almost temperature independent; the maximum decrease of the saturated MFIS is less than 10%, from 265 K to 100 K. This well-behaved temperature response makes this alloy particularly valuable for industrial and military smart actuators and transducers. Furthermore, it was found that the direction in which the MFIS has the largest value is always the [001], namely, the growth direction of the crystals.

Published in:

IEEE Transactions on Magnetics  (Volume:41 ,  Issue: 3 )