By Topic

A temperature-insensitive self-recharging circuitry used in DRAMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chua-Chin Wang ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Yih-Long Tseng ; Chih-Chiang Chiu

This paper presents a practical self-recharging circuitry for DRAMs. The proposed self-recharging circuitry not only reduces the standby power by monitoring the voltage drop caused by the data loss of a memory cell but also adjusts the recharging period of the memory cell that results from leakage currents. The proposed design is insensitive to temperature variations. A 1-Kb DRAM using our design is fabricated by a TSMC 0.35-/spl mu/m 1P4M CMOS process. The physical measurement of the proposed design on silicon verifies the correctness of the proposed circuitry.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )