By Topic

A forward body-biased low-leakage SRAM cache: device, circuit and architecture considerations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kim, C.H. ; IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA ; Jae-Joon Kim ; Mukhopadhyay, S. ; Roy, K.

This paper presents a forward body-biasing (FBB) technique for active and standby leakage power reduction in cache memories. Unlike previous low-leakage SRAM approaches, we include device level optimization into the design. We utilize super high Vt (threshold voltage) devices to suppress the cache leakage power, while dynamically FBB only the selected SRAM cells for fast operation. In order to build a super high Vt device, the two-dimensional (2-D) halo doping profile was optimized considering various nanoscale leakage mechanisms. The transition latency and energy overhead associated with FBB was minimized by waking up the SRAM cells ahead of the access and exploiting the general cache access pattern. The combined device-circuit-architecture level techniques offer 64% total leakage reduction and 7.3% improvement in bit line delay compared to a previous state-of-the-art low-leakage SRAM technique. Static noise margin of the proposed SRAM cell is comparable to conventional SRAM cells.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )