By Topic

The study of remotely teleoperated robotic manipulator system for underwater construction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chung Cheng Chang ; Dept. of Electr. Eng., Nat. Taiwan Ocean Univ., Keelung, Taiwan ; Jung Hwa Wang ; Chen Chou Lin ; Mu Der Jeng
more authors

Most commercial underwater manipulators to date belong to master-slave type. The disadvantage of the system is that it requires the operator be well trained and fully skilled. Hence a robot manipulator system with high intelligence should be developed to fulfill the need of less-skilled or even non-skilled operators. In response to the above needs, we have designed and implemented an intelligent underwater robotic manipulator system to enhance the capability of the robotic manipulator. This developing system consists of a manipulator, a distance measurement system, water-proof camera, computer, interface technology and task planning technology etc. The system is constructed as a windows-guided, supervisory underwater robotic manipulator system. The underwater manipulator was designed and fabricated to be an articulate type robot with five rotary joints, including waist, shoulder, elbow, wrist-pitch, and wrist-roll motion. The system consists four subsystems to facilitate the intelligence behavior of the robotic system. The modules include a task planning module, an image process and identification module a distance measurement module, and a motion planning and control module. A prototype of teleoperated underwater robotic manipulator systems has been setup. The finished prototype underwater manipulator system have been used as a test station for underwater operation, to crip and more a object. The set up system is hanged under a manipulator is installed on the 6 degrees of freedom rotation platforms to simulate ROV motion under sea. The remotely teleoperated robot manipulator system hanged under the 6 degrees of freedom rotation platform can finish a underwater construction. To demonstrate the ability of the underwater robotic manipulator system, we designed an experiment for the underwater manipulator under the 6 degrees of freedom rotation platforms to simulating ROV under sea to accomplish an object crip under water with robotic system. The task planning module incorporated with the commands from the control panel, forms the highest control level of the system. In the manipulator system, the image module functions as a pre-process. It deals with tasks such as extracting target objects from CCD-images, and more importantly, providing information needed by t- he planning module. In distance measurement module, we have test ultrasonic and laser distance measurement system to offer main system accuracy distance information. In the motion planning and control module, the coordinates of the target position are obtained from the task planning module, then the inverse kinematics of the manipulator is performed to derive the joint angle for each joint.

Published in:

Underwater Technology, 2004. UT '04. 2004 International Symposium on

Date of Conference:

20-23 April 2004