Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Multiple volume injection technique for high-resolution DNA sample detection utilizing planar microfluidic chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lung-Ming Fu ; Nat. Pingtung Univ. of Sci. & Technol., Taiwan ; Che-Hsin Lin ; Guan-Liang Chang

This paper presents an experimental and numerical investigation into the use of high-resolution injection techniques to separate DNA fragments within electrophoresis microchips. The study addresses the principal material transport mechanisms such as electrokinetic migration, fluid flow, diffusion, variable-volume injection methods, and gives detail analyses to the double-L injection technique, which employs electrokinetic manipulations to avoid sample leakage within the microchip. We also study the sample leakage effect during sample injection and separation. The standard DNA ladder and the φ-174 DNA fragments are used to test the performance for this proposed method. Results show that this unique injection system in the current microfluidic chip presented within this paper is capable of simulating the functions of the cross, double-T form through appropriate manipulations of the electric field within its various channels. The proposed double-L injection method confirms its ability to reduce sample leakage effect during operation. The integrated microfluidic chip and double-L injection technique developed in this study has an exciting potential for use in high-quality, high-throughput chemical analysis applications and in many other applications throughout the field of micro-total-analysis systems.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:2 )

Date of Conference:

1-5 Sept. 2004