By Topic

Analysis of brain white matter via fiber tract modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gerig, G. ; Dept. of Comput. Sci., North Carolina Univ., USA ; Gouttard, S. ; Corouge, I.

White matter fiber bundles of the human brain form a spatial pattern defined by the anatomical and functional architecture. Tractography applied to the tensor field in diffusion tensor imaging (DTI) results in sets of streamlines which can be associated with major fiber tracts. Comparison of fiber tract properties across subjects needs comparison at corresponding anatomical locations. Moreover, clinical analysis studying fiber tract disruption and integrity requires analysis along tracts and within cross-sections, which is hard to accomplish by conventional region of interest and voxel-based analysis. We propose a new framework for MR DTI analysis that includes tractography, fiber clustering, alignment via local shape parametrization and diffusion analysis across and along tracts. Feasibility is shown with the uncinate fasciculus and the cortico-spinal tracts. The extended set of features including fiber tract geometry and diffusion properties might lead to an improved understanding of diffusion properties and its association to normal/abnormal brain development.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:2 )

Date of Conference:

1-5 Sept. 2004