Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Interaction between cellular voltage-sensitive conductance and network parameters in a model of neocortex can generate epileptiform bursting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
van Drongelen, W. ; Dept. of Pediatrics, Chicago Univ., IL, USA ; Lee, H.C. ; Koch, H. ; Elsen, F.
more authors

We examined the effects of both intrinsic neuronal membrane properties and network parameters on oscillatory activity in a model of neocortex. A scalable network model with six different cell types was built with the pGENESIS neural simulator. The neocortical network consisted of two types of pyramidal cells and four types of inhibitory interneurons. All cell types contained both fast sodium and delayed rectifier potassium channels for generation of action potentials. A subset of the pyramidal neurons contained an additional slow inactivating (persistent) sodium current (NaP). The neurons with the NaP current showed spontaneous bursting activity in the absence of external stimulation. The model also included a routine to calculate a simulated electroencephalogram (EEG) trace from the population activity. This revealed emergent network behavior which ranged from desynchronized activity to different types of seizure-like bursting patterns. At settings with weaker excitatory network effects, the propensity to generate seizure-like behavior increased. Strong excitatory network connectivity destroyed oscillatory behavior, whereas weak connectivity enhanced the relative importance of the spontaneously bursting cells. Our findings are in contradiction with the general opinion that strong excitatory synaptic and/or insufficient inhibition effects are associated with seizure initiation, but are in agreement with previously reported behavior in neocortex.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:2 )

Date of Conference:

1-5 Sept. 2004