By Topic

Flow Patterns and Wall Shear Stress Distributions at Atherosclerotic-Prone Sites in a Human Left Coronary Artery - An Exploration Using Combined Methods of CT and Computational Fluid Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Suo Jin ; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA ; Yan Yang ; J. Oshinski ; A. Tannenbaum
more authors

Computed tomography (CT) slices are combined with computational fluid dynamics (CFD) to simulate the flow patterns in a human left coronary artery. The vascular model was reconstructed from CT slices scanned from a healthy volunteer in vivo. The spatial resolution of the slices is 0.6 × 0.6 × 0.625 mm so that geometrical details of the local wall surface of the vessel could be considered in the CFD modeling. This level of resolution is needed to investigate the wall shear stress (WSS) distribution, a factor generally recognized as a related to the atherogenesis. The WSS distributions on the main trunk and bifurcation of the left coronary artery of the model in one cardiac cycle are presented, and the results demonstrate that low and oscillating WSS is correlative with clinical observations of the atherosclerotic-prone sites in the left coronary artery.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:2 )

Date of Conference:

1-5 Sept. 2004