Cart (Loading....) | Create Account
Close category search window
 

Inference of genetic regulatory networks with recurrent neural network models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rui Xu ; Dept. of Electr. & Comput. Eng., Missouri-Rolla Univ., Rolla, MO, USA ; Xiao Hu ; Wunsch, D.C.

Large-scale gene expression data coming from microarray experiments provide us a new means to reveal fundamental cellular processes, investigate functions of genes, and understand relations and interactions among them. To infer genetic regulatory networks from these data with effective computational tools has become increasingly important Several mathematical models, including Boolean networks, Bayesian networks, dynamic Bayesian networks, and linear additive regulation models, have been used to explore the behaviors of regulatory networks. In this paper, we investigate the inference of genetic regulatory networks from time series gene expression in the framework of recurrent neural network model.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:2 )

Date of Conference:

1-5 Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.