Cart (Loading....) | Create Account
Close category search window

MEG source estimation in the presence of low-rank interference using cross-spectral metrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gutierrez, D. ; Dept. of Bioeng., Illinois Univ., Chicago, IL, USA ; Nehorai, Arye ; Dogandzic, A.

We estimate a source current dipole at a known location in the presence of low-rank interference using magnetoencephalography (MEG). We present a space-time processor for MEG data based on the generalized sidelobe canceler (GSC). We extend the classical vector beamformer to a matrix structure without making any assumptions on the rank of the covariance matrix of noise and interference, or constraint matrices. Furthermore, we define the cross-spectral metrics (CSM) in their most general form. The CSM method is known to approximate the performance of the matched filter for the case of unknown covariance matrix. In our case, the CSM also allows to reduce the complexity of the filtering problem without significant loss of performance in the signal-to-interference-plus-noise ratio (SINR). Our results show that good estimates of the dipole sources can be achieved by only using a few eigenvalues, namely, those corresponding to the largest CSM.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:1 )

Date of Conference:

1-5 Sept. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.