By Topic

Influence of EEG measurement montage on source localization error bounds due to head modeling errors caused by brain lesions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. Bruno ; Dipt. di Elettrotecnica Elettronica ed Inf., Trieste Univ., Italy ; F. Vatta ; P. Inchingolo

EEG source reconstruction accuracy depends on numerous factors, including head modeling accuracy, the specific inverse approach and the adopted EEG measurement montage. In This work we present results of a simulation study, performed with an eccentric-spheres head model, investigating the EEC dipole source reconstruction errors bounds caused by neglecting brain lesions in the head model. To separate the effect of head modeling accuracy from errors due to specific inverse approach, we based our study on an exhaustive "goal function (GF) scan" method, in which the source parameter search space is discretized and at every scan point a GF value is computed, allowing the exhaustive determination of dipole source reconstruction error bounds and the confidence interval for inverse problem solution. Six different electrodes montages have been considered, from a minimum of 32 to a maximum of 128 electrodes, keeping spatial sampling constant; electrodes coverage increases varying minimum electrodes latitude on the scalp. Source localization and intensity error bounds obtained justify the conclusion that, in the presence of a lesion, a pathological head model must be selected to accurately reconstruct the neural source, as the systematic error due to neglecting lesion progressively increases adopting smaller EEG electrodes coverages.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:1 )

Date of Conference:

1-5 Sept. 2004