By Topic

Patient-specific seizure onset detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shoeb, A. ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; Edwards, H. ; Connolly, J. ; Bourgeois, B.
more authors

This work presents an automated, patient-specific method for the detection of epileptic seizure onsets from noninvasive EEG. We adopt a patient-specific approach to exploit the consistency of an individual patient's seizure and non-seizure EEG. Our method uses a wavelet decomposition to construct a feature vector that captures the morphology and spatial distribution of an EEG epoch, and then determines whether that vector is representative of a patient's seizure or non-seizure EEG using the support-vector machine classification algorithm. Our completely automated method was tested on non-invasive EEG from thirty-six pediatric subjects suffering from a variety of seizure types. It detected 131 of 139 seizure events within 8.0±3.2 seconds following electrographic onset, and declared 15 false-detections in 60 hours of clinical EEG. Our patient-specific method can be used to initiate delay-sensitive clinical procedures following seizure onset; for example, the injection of an imaging radiopharmaceutical or stimulation of the vagus nerve.

Published in:

Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE  (Volume:1 )

Date of Conference:

1-5 Sept. 2004