By Topic

Directly estimated adaptive detectors for code-division multiple-access signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karayiannis, N.B. ; Dept. of Electr. & Comput. Eng., Univ. of Houston, TX, USA ; Chookiarti, J.

This paper presents adaptive multiuser detectors for code-division multiple-access (CDMA) signals in wireless communication systems. Directly estimated adaptive (DEA) detectors are developed by formulating CDMA detection as an inverse problem in the presence of channel-induced interference and noise. The detector parameters are computed by a fully sequential adaptive algorithm that requires no matrix inversion, and can be implemented online as the data arrive at the receiver. The proposed DEA detector is experimentally evaluated in terms of its robustness to noise, resistance to the near-far problem, and ability to handle multipath fading signals. This experimental study indicates that the proposed DEA detector requires shorter training sequences of bits to achieve the performance levels attained by existing adaptive implementations of the minimum mean-square error detector.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 2 )