By Topic

An efficient key predistribution scheme for ad hoc network security

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramkumar, M. ; Dept. of Comput. Sci. & Eng., Mississippi State Univ., MS, USA ; Memon, N.

We introduce hashed random preloaded subsets (HARPS), a highly scalable key predistribution (KPD) scheme employing only symmetric cryptographic primitives. HARPS is ideally suited for resource constrained nodes that need to operate for extended periods without active involvement of a trusted authority (TA), as is usually the case for nodes forming ad hoc networks (AHNs). HARPS, a probabilistic KPD scheme, is a generalization of two other probabilistic KPDs. The first, random preloaded subsets (RPSs), is based on random intersection of keys preloaded in nodes. The second, proposed by Leighton and Micali (LM) is a scheme employing repeated applications of a cryptographic hash function. We investigate many desired properties of HARPS like scalability, computational and storage efficiency, flexibility in deployment modes, renewability, ease of extension to multicast scenarios, ability to cater for broadcast authentication, broadcast encryption, etc., to support its candidacy as an enabler for ad hoc network security. We analyze and compare the performance of the three schemes and show that HARPS has significant advantages over other KPDs, and in particular, over RPS and LM.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:23 ,  Issue: 3 )