By Topic

On the interdependence of distributed topology control and geographical routing in ad hoc and sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Melodia, T. ; Broadband & Wireless Networking Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Pompili, D. ; Akyildiz, I.F.

Since ad hoc and sensor networks can be composed of a very large number of devices, the scalability of network protocols is a major design concern. Furthermore, network protocols must be designed to prolong the battery lifetime of the devices. However, most existing routing techniques for ad hoc networks are known not to scale well. On the other hand, the so-called geographical routing algorithms are known to be scalable but their energy efficiency has never been extensively and comparatively studied. In a geographical routing algorithm, data packets are forwarded by a node to its neighbor based on their respective positions. The neighborhood of each node is constituted by the nodes that lie within a certain radio range. Thus, from the perspective of a node forwarding a packet, the next hop depends on the width of the neighborhood it perceives. The analytical framework proposed in this paper allows to analyze the relationship between the energy efficiency of the routing tasks and the extension of the range of the topology knowledge for each node. A wider topology knowledge may improve the energy efficiency of the routing tasks but increases the cost of topology information due to signaling packets needed to acquire this information. The problem of determining the optimal topology knowledge range for each node to make energy efficient geographical routing decisions is tackled by integer linear programming. It is shown that the problem is intrinsically localized, i.e., a limited topology knowledge is sufficient to make energy efficient forwarding decisions. The leading forwarding rules for geographical routing are compared in this framework, and the energy efficiency of each of them is studied. Moreover, a new forwarding scheme, partial topology knowledge forwarding (PTKF), is introduced, and shown to outperform other existing schemes in typical application scenarios. A probe-based distributed protocol for knowledge range adjustment (PRADA) is finally introduced that allows each node to efficiently select online its topology knowledge range. PRADA is shown to rapidly converge to a near-optimal solution.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:23 ,  Issue: 3 )