By Topic

Small v-bend silica waveguide using an elliptic mirror for miniaturization of planar lightwave circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Suzuki ; Dept. of Electron. & Electr. Eng., Keio Univ., Japan ; Y. Shibata ; H. Tsuda

A small v-bend optical waveguide using an elliptic mirror to miniaturize planar lightwave circuits has been proposed and fabricated. The v-bend waveguide is composed of a succession of single-mode curved waveguides, straight waveguides, a slab waveguide, and an elliptic Ag mirror. The design of the v-bend structure has been optimized to reduce the bending area. For example, the area of the 180° v-bend structure with a refractive index difference of 0.75% is approximately 0.25 mm × 1.1 mm, much smaller than that of a curved waveguide (10 mm × 5 mm). The detailed structure has been designed, with fabrication tolerances being investigated using a finite difference time domain (FDTD) method and a beam propagation method (BPM). The v-bend waveguides were fabricated with the usual silica waveguide processes: Ag metal was deposited on the etched surface using sputtering, electron beam deposition, or silver mirror reaction. The average total, polarization-dependent, and wavelength-dependent loss are about 1.9, 0.01, and 0.1 dB, respectively, in the wavelength range 1540-1600 nm. The origins of the v-bend waveguide loss have been studied and are attributed to the mirror position misalignment, the mirror facet tilt, the mirror surface roughness, and the mirror absorption.

Published in:

Journal of Lightwave Technology  (Volume:23 ,  Issue: 2 )