Cart (Loading....) | Create Account
Close category search window

Modeling and design of two-dimensional guided-wave photonic band-gap devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ciminelli, C. ; Dipt. di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy ; Peluso, F. ; Armenise, M.N.

The model of two-dimensional (2-D) guided-wave photonic band-gap structures based on the Bloch-Floquet theory is proposed for the first time for both infinite and finite length devices. The efficient computation of dispersion curves and field distribution is carried out in very short computer time. Both guided and radiated modes can be easily identified to give a physical insight, even in defective structures. The accuracy of the model has been tested through the design of a very compact narrow-band 2-D guided-wave photonic band-gap filter at 1.55 μm. The filter has a channel isolation of 22 dB, a large number of channel (>80) with a channel spacing of 50 GHz, and a very short length (24 μm).

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 2 )

Date of Publication:

Feb. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.