By Topic

Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. T. Ng ; Sch. of Phys., Sydney Univ., NSW, Australia ; J. L. Blows ; J. T. Mok ; R. W. McKerracher
more authors

This paper presents a parametric amplifier configuration that enables real-time monitoring of the net dispersion experienced by a pulse train. Fast detection or fast electronic signal processing is not required. The device exploits cascaded four-wave mixing (FWM) in an optical fiber and exhibits parametric gain and frequency conversion efficiency of more than 18 dB. Dispersion monitoring with 11-ps pulses that have experienced a net dispersion of ±180ps/nm are demonstrated. These pulses are similar to those to be used in high-bandwidth (∼40Gb/s) communication systems. The device is compatible with 160-Gb/s systems. Parametric amplification within the device enables simultaneous dispersion monitoring, wavelength conversion, and amplification. The monitor can be used in a feedback loop with a tunable dispersion compensator, allowing dispersion to be managed. Equations governing the FWM process are presented; there is good agreement between the simulated and measured results. The equations are further used to understand which of the several FWM processes within the device dominate.

Published in:

Journal of Lightwave Technology  (Volume:23 ,  Issue: 2 )