By Topic

Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jang-hyun Park ; Dept. of Control Syst. Eng., Mokpo Nat. Univ., Chonnam, South Korea ; Sung-Hoe Huh ; Seong-Hwan Kim ; Sam-Jun Seo
more authors

A direct adaptive state-feedback controller is proposed for highly nonlinear systems. We consider uncertain or ill-defined nonaffine nonlinear systems and employ a neural network (NN) with flexible structure, i.e., an online variation of the number of neurons. The NN approximates and adaptively cancels an unknown plant nonlinearity. A control law and adaptive laws for the weights in the hidden layer and output layer of the NN are established so that the whole closed-loop system is stable in the sense of Lyapunov. Moreover, the tracking error is guaranteed to be uniformly asymptotically stable (UAS) rather than uniformly ultimately bounded (UUB) with the aid of an additional robustifying control term. The proposed control algorithm is relatively simple and requires no restrictive conditions on the design constants for the stability. The efficiency of the proposed scheme is shown through the simulation of a simple nonaffine nonlinear system.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 2 )