By Topic

A recurrent neural network for solving nonlinear convex programs subject to linear constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youshen Xia ; Dept. of Appl. Math., Nanjing Univ. of Posts & Telecommun., China ; Jun Wang

In this paper, we propose a recurrent neural network for solving nonlinear convex programming problems with linear constraints. The proposed neural network has a simpler structure and a lower complexity for implementation than the existing neural networks for solving such problems. It is shown here that the proposed neural network is stable in the sense of Lyapunov and globally convergent to an optimal solution within a finite time under the condition that the objective function is strictly convex. Compared with the existing convergence results, the present results do not require Lipschitz continuity condition on the objective function. Finally, examples are provided to show the applicability of the proposed neural network.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 2 )