By Topic

Encoding strategy for maximum noise tolerance bidirectional associative memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dan Shen ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Cruz, J.B.

In this paper, the basic bidirectional associative memory (BAM) is extended by choosing weights in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set for BAM. We prove that for a given set of training pairs, the maximum noise tolerance set is the largest, in the sense that this optimized BAM will recall the correct training pair if any input pattern is within the maximum noise tolerance set and at least one pattern outside the maximum noise tolerance set by one Hamming distance will not converge to the correct training pair. This maximum tolerance set is the union of the maximum basins of attraction. A standard genetic algorithm (GA) is used to calculate the weights to maximize the objective function which generates a maximum tolerance set for BAM. Computer simulations are presented to illustrate the error correction and fault tolerance properties of the optimized BAM.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 2 )