By Topic

Approximating optimal spare capacity allocation by successive survivable routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Liu ; OPNET Technol., Cary, NC, USA ; Tipper, D. ; Siripongwutikorn, P.

The design of survivable mesh based communication networks has received considerable attention in recent years. One task is to route backup paths and allocate spare capacity in the network to guarantee seamless communications services survivable to a set of failure scenarios. This is a complex multi-constraint optimization problem, called the spare capacity allocation (SCA) problem. This paper unravels the SCA problem structure using a matrix-based model, and develops a fast and efficient approximation algorithm, termed successive survivable routing (SSR). First, per-flow spare capacity sharing is captured by a spare provision matrix (SPM) method. The SPM matrix has a dimension the number of failure scenarios by the number of links. It is used by each demand to route the backup path and share spare capacity with other backup paths. Next, based on a special link metric calculated from SPM, SSR iteratively routes/updates backup paths in order to minimize the cost of total spare capacity. A backup path can be further updated as long as it is not carrying any traffic. Furthermore, the SPM method and SSR algorithm are generalized from protecting all single link failures to any arbitrary link failures such as those generated by Shared Risk Link Groups or all single node failures. Numerical results comparing several SCA algorithms show that SSR has the best trade-off between solution optimality and computation speed.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 1 )