By Topic

Accumulation-based congestion control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Xia ; Microsoft Corp., Redmond, WA, USA ; D. Harrison ; S. Kalyanaraman ; K. Ramachandran
more authors

This paper generalizes the TCP Vegas congestion avoidance mechanism and uses accumulation , buffered packets of a flow inside network routers, as a congestion measure based on which a family of congestion control schemes can be derived. We call this model Accumulation-based Congestion Control (ACC), which fits into the nonlinear optimization framework proposed by Kelly. The ACC model serves as a reference for packet-switching network implementations. We show that TCP Vegas is one possible scheme under this model. It is well known that Vegas suffers from round trip propagation delay estimation error and reverse path congestion. We therefore design a new Monaco scheme that solves these problems by employing an out-of-band, receiver-based accumulation estimator, with the support of two FIFO priority queues from the (congested) routers. Comparisons between these two schemes demonstrate that Monaco does not suffer from the problems mentioned above and achieves better performance than Vegas. We use ns-2 simulations and Linux implementation experiments to show that the static and dynamic performance of Monaco matches the theoretic results. One key issue regarding the ACC model in general, i.e., the scalability of bottleneck buffer requirement, and a solution using a virtual queueing algorithm are discussed and evaluated.

Published in:

IEEE/ACM Transactions on Networking  (Volume:13 ,  Issue: 1 )