By Topic

On fundamental tradeoffs between delay bounds and computational complexity in packet scheduling algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Xu ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Lipton, R.J.

We clarify, extend, and solve a long-standing open problem concerning the computational complexity for packet scheduling algorithms to achieve tight end-to-end delay bounds. We first focus on the difference between the time a packet finishes service in a scheduling algorithm and its virtual finish time under a GPS (General Processor Sharing) scheduler, called GPS-relative delay. We prove that, under a slightly restrictive but reasonable computational model, the lower bound computational complexity of any scheduling algorithm that guarantees O(1) GPS-relative delay bound is Ω(logn). We also discover that, surprisingly, the complexity lower bound remains the same even if the delay bound is relaxed to O(na) for 0a) delay) to a much stronger computational model, the linear decision tree. Finally, we show that the same complexity lower bounds are conditionally applicable to guaranteeing tight end-to-end delay bounds, if the delay bounds are provided through the Latency Rate (LR) framework.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:13 ,  Issue: 1 )