By Topic

Framework for real-time behavior interpretation from traffic video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kumar, P. ; Inst. of Infocomm Res., Singapore, Singapore ; Surendra Ranganath ; Huang Weimin ; Sengupta, K.

Video-based surveillance systems have a wide range of applications for traffic monitoring, as they provide more information as compared to other sensors. In this paper, we present a rule-based framework for behavior and activity detection in traffic videos obtained from stationary video cameras. Moving targets are segmented from the images and tracked in real time. These are classified into different categories using a novel Bayesian network approach, which makes use of image features and image-sequence-based tracking results for robust classification. Tracking and classification results are used in a programmed context to analyze behavior. For behavior recognition, two types of interactions have mainly been considered. One is interaction between two or more mobile targets in the field of view (FoV) of the camera. The other is interaction between targets and stationary objects in the environment. The framework is based on two types of a priori information: 1) the contextual information of the camera's FoV, in terms of the different stationary objects in the scene and 2) sets of predefined behavior scenarios, which need to be analyzed in different contexts. The system can recognize behavior from videos and give a lexical output of the detected behavior. It also is capable of handling uncertainties that arise due to errors in visual signal processing. We demonstrate successful behavior recognition results for pedestrian-vehicle interaction and vehicle-checkpost interactions.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:6 ,  Issue: 1 )