Cart (Loading....) | Create Account
Close category search window
 

Geometric travel planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Edelkamp, S. ; Lehrstuhl, Univ. Dortmund, Germany ; Jabbar, S. ; Willhalm, T.

This paper provides a novel approach for optimal route planning by making efficient use of the underlying geometrical structure. It combines classical artificial intelligence exploration with computational geometry. Given a set of global positioning system (GPS) trajectories, the input is refined by geometric filtering and rounding algorithms. For constructing the graph and the according point-localization structure, fast scan line and divide-and-conquer algorithms are applied. For speeding up the optimal online search algorithms, the geometrical structure of the inferred weighted graph is exploited in two ways; it is compressed while retaining the original information for unfolding resulting shortest paths and is then annotated by lower bounds and refined topographic information (for example, by the bounding boxes of all shortest paths that start with a given edge). Traffic disturbances can result in an increase in travel time for the affected area that, in turn, can affect the precomputed information. This paper discusses two models of introducing dynamics in a navigation system. The online planning system GPS-ROUTE implements the above techniques and provides a client-server web interface to answer a series of shortest-path or shortest-time queries.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:6 ,  Issue: 1 )

Date of Publication:

March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.