Cart (Loading....) | Create Account
Close category search window

An instruction set architecture based code compression scheme for embedded processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Menon, S.K. ; Dept. of Comput. Sci. & Autom., Indian Inst. of Sci., Bangalore, India ; Shankar, P.

Summary form only given. We propose a general purpose code compression scheme for embedded systems, based on the instruction set architecture and report results on the Intel StrongARM, a low-cost, low-power RISC architecture and TI TMS320C62x, a widely used VLIW architecture. Fast decompression techniques are explored to improve the decompression overhead of the compression scheme. Compression ratios ranging from 68% to 75% were obtained for TMS320C62x and 69% to 78% for the StrongARM processor. The basic idea of the compression scheme is to divide the instructions into different logical classes and to build multiple dictionaries for them. The size and the number of multiple dictionaries are fixed for a given processor and are determined by the partitioning algorithm which works over the instruction set architecture supplied as input. Frequently occurring unique instruction segments are inserted into the dictionaries and the instructions are encoded as pointers to the respective entries. An opcode, which helps in fast decompression, is attached to an instruction segment to identify its logical class and the dictionary to be accessed.

Published in:

Data Compression Conference, 2005. Proceedings. DCC 2005

Date of Conference:

29-31 March 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.