By Topic

Design of high-performance power-aware asynchronous pipelined circuits in MOS current-mode logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tin Wai Kwan ; Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada ; M. Shams

This paper introduces the implementation of multi-GHz power-aware asynchronous pipelined circuits in MOS current-mode logic (MCML). The C-element and double-edge-triggered flip-flop are implemented in MCML and used in the so-called micropipeline circuits. An input data detector is proposed to put the inactive combinational logic into sleep mode. The effects of different layout techniques on the performance and power dissipation of an MCML FIFO are also investigated. Based on post-layout simulation results in a standard 0.18 μm CMOS technology, an asynchronous MCML four-stage FIFO demonstrates a throughput of 4 GHz while dissipating 3.7 mW. The MCML C-element dissipates up to 4× less power compared to its conventional static counterpart at the same throughput of 1.9 GHz. The asynchronous MCML pipelined four-bit carry-look ahead adder with power-saving mechanism reduces the power dissipation by 32% compared to the one without the power-saving mechanism. The power overhead of the input data detector is only 0.23 mW. The input data detector shuts off the stage power in 2 ns and restores the stage in 150 ps after the presence of the new input.

Published in:

11th IEEE International Symposium on Asynchronous Circuits and Systems

Date of Conference:

14-16 March 2005